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ABSTRACT 

Calculations were made with a computer code developed for  making point-defect 
calculations in body-centered-cubic metals. A semi-empirical cubic potential based on 
experimental data was also developed for tungsten for  these calculations. The vacancy 
migration energy for tungsten was calculated. The calculated value of 1.73 electron 
volts, together with experimental data, suggests that vacancies migrate in stage III 
recovery in tungsten. The formation energies for  six possible equilibrium interstitial 
configurations were also calculated. The (110) split interstitial was the most stable 
configuration for tungsten with a formation energy of 9 .73  electron volts. 
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POINT DEFECT CALCULATIONS IN TUNGSTEN 

by Ronald L. Danilowicz 

Lewis Research Center 

SUMMARY 

Calculations were made with a computer code developed for  making point-defect cal­
culations in body-centered-cubic metals. A semi-empirical cubic potential based on 
experimental data was also developed for  tungsten for these calculations. The vacancy 
migration energy for tungsten was calculated. The calculated value of 1 .73  electron 
volts, together with experimental data, suggests that vacancies migrate in stage 111 
recovery in tungsten, the formation energies for six possible equilibrium interstitial con­
figuration were also calculated. The (110) split interstitial w a s  the most stable config­
uration for tungsten with a formation energy of 9. 73 electron volts. 

INTRODUCTION 

All rea l  crystal  lattices contain a variety of imperfections. Some of these, such as 
impurity atoms, dislocations, etc. , are produced during the preparation and handling of 
the crystals.  Structural point defects and clusters of these point defects , on the other 
hand, a r e  necessary at any finite temperature to keep the crystal  in thermal equilibrium. 
There a r e  two basic types of structural  point defects, hereinafter simply referred to as 
point defects: one is a vacancy o r  vacant lattice s i te ,  and the other is an interstitial o r  
an atom in a nonlattice site. 

The mechanical and physical properties of a material  a r e  very sensitive to point 
defects. The reliability of nuclear reactors depends partially on the strength of the 
materials with which they a r e  composed. Radiation damage primarily produces point 
defects that have a pronounced effect on the strength of the reactor materials.  A 
thorough understanding of the properties of these point defects for  any particular material  
is essential for  studying the more complex problem of how radiation damage affects 
certain properties, like strength, of the material. 

In an effort to develop analytical tools for  the study of point defects, an analytical 
program was undertaken to study the properties of point defects in tungsten. Tungsten 



was chosen because of its potential application as a high-temperature reactor material. 
A computer program was written to calculate the formation and migration energies 

of point defects and clusters of point defects in body-centered-cubic metals. Only 
results of point-defect calculations are discussed herein. The computer has often been 
applied to the study of point defects in metals (refs. 1 to 11). In the present study, an 
approach similar to those of Anderman (ref. 6) and Domingos (ref. 7) is used where the 
strain field associated with a defect is allowed to propagate freely through the lattice. 
Fo r  the interaction between tungsten atoms, a cubic potential was developed for this 
investigation similar to that first used by Johnson (ref. 2) for a-iron. After Johnson's 
original work, Anderman has used cubic potentials for  copper, and Johnson (ref. 3) for 
tungsten as an extension of his a! iron work. For  tungsten, Johnson calculated a vacancy 
formation energy of 4.96 electron volts. He also calculated that the (110) split inter­
stitial is the most stable tungsten interstitial configuration with a formation energy 
9.77 electron volts. Johnson's value for the vacancy formation energy does not agree 
with the experimental value of 3.14 electron volts obtained by Kraftmakher and Strelkov 
(ref. 12). Therefore, he has suggested (refs. 3 and 13) that, when possible, the cubic 
potentials generated for a particular metal should be chosen so that the computer calcu­
lations yield the experimental value for the vacancy formation energy. This approach 
has been adopted in the present study to generate a new tungsten potential which, in turn, 
was used to calculate the vacancy migration energy and the most stable interstitial and its 
formation energy. 

CALCULATIONAL TECHNIQUES 

In general, a computer program to study properties of point-defect configurations 
usually operates in the following manner. The point defect of interest is introduced into 
a perfect lattice. Because of the point defect, the surrounding atoms will  experience 
nonzero forces so that the lattice must be relaxed into its new equilibrium state. Forma­
tion energies and migration energies of point defects are determined by comparing the 
potential energy of a perfect lattice with that of the appropriate relaxed lattice. For the 
interaction between atoms, it is usually assumed that the many-body interaction of a 
large number of mutually interacting atoms can be closely approximated by a se t  of 
independent two-body central-force interactions. 

There a r e  several  different techniques available for solving the individual problems 
associated with writing a computer program as described previously. Some of the major 
problems a r e  generating a short-range interatomic potential, cataloging the particles 
for  easy access,  finding a systematic approach for relaxing the lattice, and developing 
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the convergence criteria. The following describes some of the techniques usedfor this study. 
To keep computing t ime within reasonable limits, a short-range potential that 

goes to zero between the second and thirs  nearest neighbor distances is used with this 
program. At least second nearest neighbor separations must be included because a body­
centered-cubic lattice is unstable when only first nearest  neighbor interactions are con­
sidered. The interatomic potential for tungsten used in this study will  be described in 
detail in the next section. 

To determine the potential of a single atom and the force acting on it, it is essential 
to know the position coordinates of every atom that interacts with it. This could be done 
by searching through all the atoms in the lattice to find the ones close enough to interact 
with a particular atom. This is a very time-consuming technique, particularly for large 
lattices. Therefore, the following technique was adopted. 

All  atoms were located in boxes with the dimensions 2 by 2 by 2,  where a unit of 
length is equal to one-half the lattice constant. Each box has a unique identification 
number associated with it, which depends on the coordinates within the box. These 
identification numbers a re  also subscripts of an a r r ay ,  IBOX, in the computer program. 
Any atoms with position coordinates that give a particular box identification number, 
for example, I, have their identification numbers, for example, J and K, stored in the 
IBOX location with subscript I. The boxes were set up so that, for the interior of a 
perfect body-centered-cubic lattice, there would be two atoms per box at the locations(i,f,i)and (li,12, 123 with respect to the corner of a box. Thus, there would be 
identification numbers of two atoms stored in each IBOX location for the perfect lattice. 

All  the atoms that interact with atom J in box I can now be found by searching only the 
3 by 3 by 3 cube of boxes centered around box I. There is a unique set  of increments, 
INCR(1) to INCR(27) in the program, which is independent of position in the lattice, that 
can be added to I to get the identification numbers of the surrounding boxes. 

For the relaxations expected for  the vacancy, it could be seen that, throughout the 
relaxation process, the atoms would remain in their original boxes. Thus, there is no 
need for more than two atoms in a box except when interstitials a r e  being studied. When 
this is the case, the interstitial identification numbers are stored in the JBOX array.  
A negative value in the IBOX a r r a y  is used as a signal to search the JBOX ar ray  for 
additional atoms. 

To actually achieve the relaxation of the lattice into its new equilibrium state, a 
method for propagating the s t ra in  field associated with a group of point defects throughout 
the lattice is necessary. Initially due to the short-range interaction potential, only a 
small  number of atoms near the point-defect configuration experience nonzero forces. 
These will all be within a 3 by 3 by 3 a r r a y  of boxes centered about the point-defect 
configuration. The forces on all the atoms in these boxes are calculated along with the 
total potential energy of the crystal. The atoms are relaxed in the direction of and 
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proportional to the net force acting on them. This process is repeated until forces on 
atoms bordering the 3 by 3 by 3 a r ray  of boxes exceed a predetermined value. Then the 
group of atoms being relaxed is expanded to all atoms in a 5 by 5 by 5 a r r a y  of boxes 
centered on the point-defect configuration. (The identification numbers of the boxes being 
considered are always determined from the identification number of the center box and 
values from the INCR array:  the first 27 values for the 3 by 3 by 3 array,  the first 
125 values for the 5 by 5 by 5 a r ray ,  etc.) .  This iterative process is repeated, occa­
sionally expanding the volume of boxes being considered, until predetermined convergence 
cri teria have been met. This was usually that the value of the total energy of the crystal 
on two successive iterations agreed within 0.001 electron volt. For this study, a 
13 by 13 by 13 ar ray  of boxes was  always sufficiently large for the convergence cri teria 
to be met. 

The output from the program included the total potential energy of the lattice for each 
iteration, the volume of boxes considered for that iteration, the total potential energy of 
the perfect lattice and the relaxed lattice, and the final position of all of the atoms in the 
relaxed lattice. 

INTE RATOM IC POTENT IAL 

A composite cubic potential was used for  these calculations based on experimental 
elastic constant data. Assuming that the elastic constants a r i se  mainly from the short-
range ionic interactions, the following equations from reference 2 can be used for deter­
mining the potential. These equations for a body-centered-cubic lattice, when second 
nearest neighbor interactions are assumed, are 

and 

4 




56 

48 

40 

32 

24 

16 

8 


0 


2 
>;
m 


1.6 2.0 2.4 2.8 -.-m Separation distance, A (or 10-l' 
c c 
c (a) Composite cubic potential. 
a 

E -81 
r l r l r l r l l


Region I11 

-.81 I I I I I I 1 I I 

l r l l l 
3.2 3.6 4.0 
m) 

I 1 I I 1 1 ­
2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3. a 4.0 

Separation distance, A (or  10-l' m) 

(b) Detail of regions 111and I V .  

Figure 1. - Interatomic potential for tungsten. 
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where r1 and r2 are the first and second nearest  neighbor separations; qi, qr,  q;, 
and a r e  first and second derivations of the potential at r1 and rZ; Cll, C12, and 
C44 are elastic constants; B is the bulk modulus; and the subscript sr means short  
range. 

The long-range electronic contributions to the elastic constants, as pointed out in 
reference 13, are smal l  and difficult to calculate and are, therefore,  neglected herein. 
Thus, the short-range elastic constants are assumed to be equivalent to the total elastic 
constants. The values used for  the elastic constants for tungsten were taken from 
reference 14. At 300 K the values are Cll  = 2.6091XlO 7 newtons per  square centimeter, 
C12 = 1.5743XlO7 hewtons per  square centimeter, C44 = 0.8182X107 'newtons per square 
centimeter, and B = 1.9192XlO7 newtons per  square centimeter. The values used for 
r1 and r2 a r e  r1 = fl r2/2 and r2 = 3.16 8 (3. 16X10-10 m). 

The composite cubic potential (fig. 1) is made up of four separate regions. The 
potential for region 111, which contains r1 and r2, was derived using equations (1)to (3) .  
Because there a r e  three equations in four unknowns, the potential in this region was 
determined to within an arbi t rary constant. It was suggested by Johnson in reference 3 
that, when possible, this arbi t rary constant should be chosen to give agreement between 
the calculated and the experimental values of the vacancy formation energy. The con­
stant, therefore, was  chosen to match the experimental value of the vacancy formation 
energy (3.14 eV) obtained by Kraftmakher and Strelkov as reported in reference 12. This 
was accomplished by changing the constant until the computer program calculated 
3.14 electron volts for  the vacancy formation energy. 

After determining the potential in region 111, a cubic potential for region IV is 
determined by matching the value and slope of the potential in region I11 at  R3 and by 
having zero value and zero slope a t  R4. The potential is cut off between the second and 
third nearest neighbors to reduce the number of calculations that a r e  necessary. At 
close separations (region I) a Born-Mayer potential was used. This has the form, 

Ae 
-r/ro , where A and ro a r e  experimentally determined constants for different 

materials. Constants for tungsten, obtained from reference 15,  were A = 33 000 elec­
tron volts and ro = 0.219 8. The cubic potential for region 11, used to smoothly join 
regions I and ID, is determined by matching the value and slope of the potential is region 
I and I11 at R1 and R2, respectively. The potential used for  these calculations is given 
in table I. 

The values for  R1, R2, R3, and R4 were chosen to keep regions 11and IV as small  
as possible while maintaining a smooth overall curve. Because regions I and 111a r e  
based on experimental data, i t  was felt that they should make up as much of the inter­
atomic potential curve as possible. 
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TABLE I. - COMPOSITE INTERATOMIC POTENTIAL 

Region Potential, 
eV 
(4 

I O < r  1 .4  33000.0 e-'/'* 219 

n 1 . 4 < r  2.0 -222.33434 r3 + 
III 2.0 < r  3.4 

IV 3.4  < r  4.0 

aInteratomic separation distance. 

RESULTS AND DISCUSSION 

Calculations were made for  both vacancies and interstitials in tungsten. For  the 
vacancy, the migration energy was calculated. For the interstitial, the stable configur­
ation was determined by comparing the formation energies of six possible equilibrium 
interstitial configurations . 

Vacancy 

To verify the mechanics of the computer code, the vacancy formation energy in 
tungsten was calculated using the tungsten potential used by Johnson (ref. 3). Using this 
potential, a vacancy formation energy of 4.95 electron volts was calculated. This com­
pared well with Johnson's value of 4.96 electron volts, even though different approaches 
were used. 

The potential used for  the res t  of the calculations was then developed as outlined in 
the previous section. The vacancy migration energy was then calculated by placing an  
atom halfway between two nearest neighbor half-vacancies, which is the saddle point for  
vacancy migration. A value of 4.87 electron volts was calculated for  the saddle-point 
energy. This gives a value of 1 .73  electron volts for  the vacancy migration energy, 
which is the difference between the saddle-point energy and the formation energy. 

Assuming that self-diffusion is by vacancy migration, then 4.73 electron volts is 
also the calculated self-diffusion energy. This calculated value is lower than Danneberg's 
experimental value of 5.23*0.2 electron volts (ref. 12) and the value, 6.66 electron volts, 
measured by Krieder and also Andelin, Knight, and Kahn (ref. 16). The calculated 
value, however, does support the lower experimental value for  the self-diffusion energy. 
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TABLE 11. - EXPERIMENTAL STAGE III 

Investigator 

(a) 

Kinchin and Thompson 


Johnson 


Niemark and Swalin 


Koo 


Stage IIIactivation 
energy in tungsten, 

eV 

1.7 


1.7 


1.7*0.1 


1.7*0.1 


The calculated vacancy migration energy of 1 .73 electron volts agrees well with 
experimental activation energies measured for stage 111(0.15 Tm, the melting temper­
ature) recovery in tungsten. These a r e  presented in table I1 (ref. 17). These investi­
gators all believe that stage 111recovery is due to vacancy migration. There a r e  investi­
gators who disagree. Among these a r e  Jeannotte (ref. 16) who feels that vacancies 
migrate in stage V recovery for  tungsten with a migration energy of 3. 3 electron volts. 
He uses the higher experimental value of 6.66 electron volts for  the self-diffusion energy 
as support for his argument. Adding the vacancy formation energy of 3.14 electron 
volts to his vacancy migration energy, gives 6.44 electron volts which gives reasonable 
agreement with the 6.66-electron volt value. However, the calculated results from this 
study support those who believe that vacancy migration is responsible for  stage 111 
recovery in tungsten. 

Interstitial 

There a r e  six equilibrium interstitial configurations that were considered. These 
configurations wil l  be referred to as 11, Ia, 13, 14, Is, and I6 and a r e  shown in fig­
ure 2. Configuration I1 is the (110) split interstitial and was found to be the most 
stable configuration in tungsten with a formation energy of 9 . 7 3  electron volts. Configur­
ation I2 is the (111) split interstitial, o r  crowdion. Configuration I3 is the activated 
crowdion, and I4 is the octahedral interstitial. Configuration I5 is the tetrahedral 
interstitial and is halfway between two octahedral interstitial si tes.  Configuration I6 
is the (100) split interstitial. The formation energy and the energy above the (110) 
split interstitial formation energy for  each configuration a r e  shown in table III. Johnson 
(ref. 3) has also calculated that the (110) split interstitial is the stable interstitial con­
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Figure  2. - In ters t i t ia l  con f igura t ions  investigated. 

TABLE III. - RELATIVE STABILITY OF 

INTERSTITIAL CONFIGURATIONS 
. .  

Configuration 'ormation Energy above (1 10 

Description 
energy, 

eV 
formation energy, 

eV 
-

(110) split interstitial 9.73 0 

(111) split interstitial 9 .90 .17 

Activated crowdion 10.01 .28 

Octahedral interstitial 11.11 1.38 

Tetrahedral interstitia 10.47 .74 

(100) split interstitial 11.20 1.47 
-~ 

figuration in tungsten with a formation energy of 9.77 electron volts in good agreement 
with the 9.73-electron volt value reported herein. The reason for  this agreement is 
unclear because the tungsten potential used by Johnson is completely different, especially 
in regions I and 11, than the one used in this study. Other calculations by Johnson (ref. 4) 
and Erginsoy, et al. , (ref. 9) show the (110) split interstitial to be the most stable 
interstitial configuration fo r  a-iron, another body-centered-cubic metal. The relative 
stability of these six configurations for  tungsten from this study is the same as that 
calculated by Johnson (ref. 4) fo r  a-iron. 
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SUMMARY OF RESULTS 

A vacancy migration energy of 1.73 electron volts for tungsten was calculated. This 
calculated value coupled with experimental results suggest that stage III recovery in 
tungsten may be due to vacancy migration. The relative stability for six possible equi­
librium interstitial configurations in tungsten was a l so  calculated. The (110) split inter­
stitial was found to  be the most stable interstitial configuration with a formation energy 
of 9.73 electron volts. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 27, 1968, 
122-29-05-01 -22. 
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